heuristics_miner_lossy_counting
An algorithm to mine a Heuristics Net using the Lossy Counting algorithm.
Parameters
-
model_update_frequency:
intdefault:10
How often (in number of events) the model should be returned. -
max_approx_error:
Floatdefault:0.001
The maximum approximation error in the Lossy Counting of the ferquencies. -
dependency_threshold:
Floatdefault:0.5
The Heuristics Miner's dependency threshold. -
and_threshold:
Floatdefault:0.8
The Heuristics Miner's AND threshold.
Returned type
The returned output has type pm4py.objects.heuristics_net.obj.HeuristicsNet. See https://processintelligence.solutions/pm4py/api?page=pm4py.objects.heuristics_net.html%23pm4py.objects.heuristics_net.obj.HeuristicsNet.
Example
from pybeamline.sources import log_source
from pybeamline.algorithms.discovery.heuristics_miner_lossy_counting import heuristics_miner_lossy_counting
from pybeamline.sinks.print_sink import print_sink
log_source(["ABC","ABC","DEF"]).pipe(
heuristics_miner_lossy_counting(model_update_frequency=4)
).subscribe(print_sink())
Output:
{'A': (node:A connections:{B:[0.5]}), 'B': (node:B connections:{C:[0.5]}), 'C': (node:C connections:{})}
{'A': (node:A connections:{B:[0.6666666666666666]}), 'B': (node:B connections:{C:[0.6666666666666666]}), 'C': (node:C connections:{})}
References
The algorithm is described in publications:
- Control-flow Discovery from Event Streams
A. Burattin, A. Sperduti, W. M. P. van der Aalst
In Proceedings of the Congress on Evolutionary Computation (IEEE WCCI CEC 2014); Beijing, China; July 6-11, 2014. - Heuristics Miners for Streaming Event Data
A. Burattin, A. Sperduti, W. M. P. van der Aalst
In CoRR abs/1212.6383, Dec. 2012.